Visualization of multidimensional data with collocated paired coordinates and general line coordinates

نویسنده

  • Boris Kovalerchuk
چکیده

Often multidimensional data are visualized by splitting n-D data to a set of low dimensional data. While it is useful it destroys integrity of n-D data, and leads to a shallow understanding complex n-D data. To mitigate this challenge a difficult perceptual task of assembling low-dimensional visualized pieces to the whole n-D vectors must be solved. Another way is a lossy dimension reduction by mapping n-D vectors to 2-D vectors (e.g., Principal Component Analysis). Such 2-D vectors carry only a part of information from n-D vectors, without a way to restore n-D vectors exactly from it. An alternative way for deeper understanding of n-D data is visual representations in 2-D that fully preserve n-D data. Methods of Parallel and Radial coordinates are such methods. Developing new methods that preserve dimensions is a long standing and challenging task that we address by proposing Paired Coordinates that is a new type of n-D data visual representation and by generalizing Parallel and Radial coordinates as a General Line coordinates. The important novelty of the concept of the Paired Coordinates is that it uses a single 2-D plot to represent n-D data as an oriented graph based on the idea of collocation of pairs of attributes. The advantage of the General Line Coordinates and Paired Coordinates is in providing a common framework that includes Parallel and Radial coordinates and generating a large number of new visual representations of multidimensional data without lossy dimension reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FlowCytoVis: Visualization Tool for Flow Cytometry Data Standards Project

The research in the Terry Fox Laboratory (TFL), BC Cancer Agency, Vancouver, BC involves the use of flow cytometry (FCM) technology. Current methods of visualization of these specific data include scatterplots, histograms and contour diagrams, which have their disadvantages in multidimensional data analysis. The work presented in this paper introduces a new visualization tool for flow cytometry...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

Three Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates

In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with coll...

متن کامل

Visualizing High-density Clusters in Multidimensional Data

The analysis of multidimensional multivariate data has been studied in various research areas for many years. The goal of the analysis is to gain insight into the specific properties of the data by scrutinizing the distribution of the records at large and finding clusters of records that exhibit correlations among the dimensions or variables. As large data sets become ubiquitous but the screen ...

متن کامل

Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions

In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014